Capsicum and Casper - a fairy tale about solving security problems

Mariusz Zaborski
Wheel Systems, FreeBSD
oshogbo@ FreeBSD.org

1 Introduction

Every year the list of security bugs is shocking. Oper-
ating systems start to innovate new mitigation techniques
like ASLR or canneries which only makes exploiting
harder but many in many cases still possible. We also try
to mitigate on a lower level like the NX bit in the CPU,
but researchers again have found a method of bypassing
this technique by the so-called return oriented program-
ing.

Another way of handling security problems is by us-
ing a sandbox environment. Some researches try to use a
sandbox on a big scale, like running different virtual ma-
chines for different tasks, while others try to use them on
a smaller scale like in a process. In this article we focus
just on two of them. Process sandboxing should be easy,
flexible, scalable and lightweight. Two of the most recent
work in BSD world deserve for our attention - Capsicum
and Pledge.

These sandboxing techniques have their strengths and
weaknesses. Process sandboxing can sometimes be too
restrictive for some of the challenges found in the real
world and this is the moment when Casper enters the
scene.

2 Pledge

Pledge (historically tame) is a sandbox framework cre-
ated for OpenBSD project [1]. Pledge assumes that we
can divide any program into two parts. One of which
is the initialization phase in which all the preparations
are performed (e.g. arguments parsing) and the other
one which is the main loop, containing the actual op-
erations (e.g. parsing a file). Pledge allows us to de-
cide which system calls can by be accessed by so called
“promises”. Each promise gives us a different set of sys-
tem calls with different options. At the moment Pledge
implements around 24 promises, in which we can count:

(2]

e stdio - one of the most common, allows us to allo-
cate memory, and perform basic io operations (like
using stdout),

e rpath - allows functions which only cause read-only
effects on the filesystem (eg. open(2) on an existing
file with read flag only),

e wpath - allows system calls which may cause write-
effects on filesystems,

e cpath - allows functions which may create new files,

e proc and exec - allow to fork and execute another
program.

Pledge always allows you to reduce permissions by sim-
ply calling pledge(2) again.

Statistics show that Pledge is very easy to use to sand-
box application. Over 400 programs in OpenBSD use
pledge.

At listing[T]we have an example of how cat(1) program
was sandboxed using pledge(2). The program has access
to stdio (cat(1) needs stdout to print result) and have ac-
cess to all filesystem as long as it is read only. A big
advantage is that cat(1) can’t create any socket or pass
descriptors. So in the end the usage of Pledge comes
to understanding the program and to giving it the right
promises.

@@ —66,6 +66,9 @@
setlocale (LC_ALL, "”);

if (pledge(”stdio rpath”,
err (1, "pledge”);

NULL) == —1)

while ((ch = getopt(argc, argv,
-1)
switch (ch) {
case ’'b’:

”benstuv”)) !=

Listing 1:
OpenBSD.

pledge(2) used in a cat(l) program in

As you can see in the listing [I] pledge has two argu-
ments. The first was already describe in depth earlier. In
the future it will be possible to pass as a second argument
a list of paths which will be whitelisted from the Pledge
sandbox. At the time of writing this article these options
were not yet implemented and always end with the error
message: “Invalid argument”.

What is also very interesting and also quite surprising
is that the author of Pledge has hard coded paths to some
files in the kernel. For example, even in sandbox, you are
always able to do operations like:

e open(2) files like /etc/localtime and any files below
/usr/share/zoneinfo,

e readlink(2) may operate on /etc/malloc.conf,

e sysctl(3) read-only operations like getdomain-
name(3), gethostname(3), getifaddrs(3), uname(3).

As motioned earlier, you can use an exec promise
which allow you to execute another program. This is an
example of promises which you should be very careful
about, and which unfortunately is over usecﬂ The real
problem with exec is that promises are not inherits be the
new process. If a potential attacker would exploit your
program he can try then run other application from your
system which can lead to a security gap.

Pledge in its assumption is very similar to the
seccomp-bpf. The difference is that with pledge we have
multiple predefined set of allowed/forbidden syscalls and
arguments. In case of seccomp-bpf we must define such
list and it is easily desynchronized after every update [3|.
Pure seccomp-bpf is also very hard to use but now we
can use libseccomp which simplify it a lot.

OpenBSD released pledge in 2015 and it is still con-
sidered as experimental feature and its API can change.

3 Capsicum

Capsicum is a lightweight OS capability and sand-
box framework implementing a hybrid capability system
model [4]. The process sandbox system’s architecture in
FreeBSD can be divided into two modules:

o Tight sandboxing (cap_enter(2))
o Capability rights (cap_rights_limit(2))

By calling cap_enter(2) we enter a sandbox or so
called capability mode. Capability mode is inherited by
all descendent processes and cannot be removed. Any
attempt to access to any global namespaces (such as path
names or pid namespace) will be prevented by the kernel.

! At the moment around 70 programs is using it.

Capabilities in Capsicum are represented by file descrip-
tors. In sandbox you can’t create a new descriptor from
global namespace, but you can still use privileges that
you already have. For instance, you can’t open any new
ﬁle but we can use capability which we have, lets say
descriptor to the directory and using openat(2) syscall we
can still open files from that directory. In Capsicum we
have two ways to obtain capabilities. The first way is to
get credentials before entering sandbox, so for example
in the initial phase of the program we open files, create
sockets and then enter sandbox to perform complicated
algorithms. The second way is to obtain them from other
process. File descriptors are ideal as the carrier of the ca-
pabilities, they can be inherited by a child process after
fork and also if the two processes share an Unix domain
socket descriptors can be passed around.

The second part of Capsicum allows us to limit the
process even further. Capability rights are a special flags
added to file descriptors which tells the kernel how you
can use them. We can limit descriptors to be read-only,
write-only, read-write but what is very interesting and
very useful is that you can even specify that descriptor
to be append onl In the FreeBSD we have defined
around 80 capability rights. For example as file specific
rights we have:

e CAP_FCHMOD allows change mode (fchmod(2)),
o CAP_FSTAT allows getting file stats (fstat(2)),
o CAP_UNLINKAT allows file deletion (unlinkat(2)).

A full list of the Capsicum capability rights can be found
in the FreeBSD rights(4) manual page. Capsicum was
first introduced in FreeBSD 9.0. Currently, there is ongo-
ing work to port Capsicum to Linux and DragonFlyBSD
(5] [6].

3.1 Sandboxing uniq(1)

As an example of using Capsicum in practice we will
use a uniqg(1) case. First what we need to do is to un-
derstand what the program is doing. The unig(1) is used
to filter out repeated lines in a file. In the code we can
see that our application is operating on input and out-
put descriptors. Both of them can be file or stdout/st-
din descriptors. In listing [2| we have code responsible
for setting capability rights on descriptor. We are us-
ing cap_rights_init(3) function to initialize a structure re-
sponsible for keeping capabilities (cap_rights_t). Unfor-
tunately the description of this structure is beyond this

2We can’t because we trying to access path namespace.

3In our software at Wheel company we use such descriptor as log
descriptor, if somebody would break in to the sandboxed program he
can’t overwrite any previous log.

article but if you are interested why do we have it in such
form you can look into another article [9].

After setting up all descriptors we can enter capabil-
ity mode which we see on listing [3] Some perceptive
reader can notice that we not only are checking result of
cap_rights_limit(3) or cap_enter(2) we also are checking
errno value. If the FreeBSD kernel is unable to enter ca-
pability mode it will fail but if it will fail with ENOSYS
that means that the FreeBSD kernel is compiled without
Capsicum support and we want to continue execution.

cap_rights_t rights;

ifp

= stdin;
ifn = ”stdin”;
ofp = stdout;
if (arge > 0 && strcmp(argv([0], ”=") != 0)

ifp = file(ifn = argv[0], "r”);
cap-rights_init(&rights , CAP_.FSTAT, CAPREAD);
if (cap_rights_limit(fileno(ifp), &rights) < 0

&& errno != ENOSYS)

err (1, “unable to limit rights for %s”, ifn

)
cap-rights_init(&rights , CAP_FSTAT, CAP_WRITE) ;
if (arge > 1)

ofp = file (argv[1l], "wW”);
else

cap_rights_set(&rights , CAP.IOCTL);
if (cap_rights_limit(fileno (ofp), &rights) < 0

&& errno != ENOSYS) {

err (1, “unable to limit rights for %s”,

arge > 1 ? argv[l] : ”stdout”);

Listing 2: uniq(1) setting descriptor capabilities.

if (cap-enter() < 0 &% errno != ENOSYS)
err (1, “unable to enter capability mode”);

Listing 3: uniq(1) entering capability mode.

4 CloudABI

CloudABI is using Capsicum to provide a runtime
environment that attempts to make it easier to use the
UNIX-like operating system at the core of a cloud com-
puting platform. The idea behind this solution is to allow
users to provide a set of binaries that communicate with
the operating system over a secure IPC, instead of forc-
ing them into using full machine vitalization or OS-level
vitalization. [7] CloudABI we can split in two modules:

e secure libc,
e runtime environment.

ClaudABI contains a libc with removes all functions that
are considered insecure (for example strepy(3), gets(3)
etc.) [8]. Its also has a special runtime environment
which forces the user to use Capsicum because before

entering the main function we are already in the capa-
bility mode. If we want to open a socket or open files
in this environment we need to define a special YAML
file with will be parsed before executing a user code and
after entering main function descriptors will be available
for use.

The author hopes that CloudABI will be used more
frequently in the Cloud platforms.

5 Comparison

As we can see Capsicum and Pledge present a totally
different approach to the security problem. In the case
of pledge we are managing access to a global namespace
by limiting syscalls and arguments to those syscall. This
approach allows us to say that we have access to a path
namespace and we can also say that we have read-only
access to that namespace.

In the Capsicum approach we are managing privileges
using file descriptors. This allows us to limit every sin-
gle descriptor. We can choose which descriptor are read-
only, append-only and so on. This approach is more fine-
grained and gives us flexibility in bigger programs.

An advantage of pledge over Capsicum is the simplic-
ity in usage of base system programs. As we have shown
in this article it is much easier to sandbox wc(1) or cat(1)
using pledge then using Capsicum.

But to be fair the author must point out that at some
stage of Pledge architecture are not appear elegant. One
of them is hard coded paths in kernel, this at some point
can be a double edge sword for the project. In Capsicum
for example you will need to run localtime(3) at least
once before entering sandbox to allow a program read
and cache the /etc/localtime file. In pledge you don’t
have that problem because you can read that file at any
time. This simplifies the code of application that we will
sandbox, but moving userland paths to the kernel doesn’t
feel right.

The second problem where the author feel that there is
room for improvement in pledge is escaping from sand-
box by using execv(2). When you enter sandbox you
shouldn’t be able to exit it at any point. We also don’t
gain anything by keeping this behavior.

Author also thinks that in the case of pledge there is
inflexibility in that approach. If you will read a code of
sandboxed application you recognize that all of them are
done matching to one template. Author is not sure if
Pledge will be so useful in bigger problems where the
program need for example reload its configuration, or in
which we cannot draw a clear line between initialization
phase and the main part. We can get impression that
Pledge was create mainly with the idea to sandbox the
base system.

6 Casper

6.1 Introduction

Traditionally in the capability environment we have a
negotiation between an unprivileged process with priv-
ileged process to access some additional rights. In the
beginning programmers did that manually. They fork
in program and in child they entered to sandbox and
left privilege processes to serve new data to the sand-
boxed one. We can analyze this approach for example
in rwhod(8) daemon in the FreeBSD base system. But
developers noticed that with this solution there is a big
amount of code which would be needed to be rewritten
multiple times for different programs. To solve this prob-
lem the Casper daemon was introduced.

6.2 Initial architecture

The idea behind Casper was to allow in simple way
to obtain more rights in a sandboxed process. If such
process need for example access to the DNS it can cre-
ate such services (before entering capability mode), limit
that services and then use it safely in sandbox. What
also was a very important goal was that API presented
by Casper was as close to original as possible. Firstly
Casper was created to solve challenges created by pro-
grams sandboxed with Capsicum, but now creators be-
lieves that Casper can be precious also for other projects.

When Casper was first implemented it was a daemon
in an operating system. It was divided to four parts:

e Casper daemon (called casperd(8)),

e services (located in /libexec/casper),

e list of services (located in /etc/casper),
e IPC library (called libcapsicum(3)).

When casperd(8) was started it created a Unix do-
main socket for communication with other process and
zygote process. The zygote process is a lightweight pro-
cess which closes all additional descriptors and uses min-
imal memory. The process can connect to Casper and
ask it to create new services, if it possible a zygote will
be used to create it. The whole process of transform-
ing zygote into services is shown in figure [} To con-
nect to casperd(8) we are using cap_init(3) function. The
advantage of having Casper asa daemon was also that
root user of FreeBSD could build a system with Cap-
sicum and Casper support but he could also decided if he
wants to use Casper in runtime. If for some reason he de-
cided to resigned from using Casper he could just kill the
capserd(8). Disadvantage of this approach is that Casper
is one in entire system so it was a single point of failure.

Services is the essence of Casper. After getting service
it will allow you to use functions which are forbidden in
the sandbox. At the moment in FreeBSD 11-CURRENT,
we have five official services.

e system.dns allows the use of gethostbyname(3),
gethostbyname2(3), gethostbyaddr(3), getad-
drinfo(3), getnameinfo(3),

e system.grp provides a getgrent(3)-compatible API,

e system.pwd provides a getpwent(3)-compatible
API,

e system.random allows obtaining entropy from /de-
v/random,

e system.sysctl
compatible API.

provides a sysctlbyname(3)-

Every service also implements also limitation functions.
For example we can limit system.pwd to some command
like we can allow to use getgrent(3) but prevent it to use
setgrent(3).

Next module of casperd(8) was list of services. The
idea was that we can install new services from ports
while compiling new software with Casper support. New
services would be automaticly added to that list which
would simplify the search for deamon.

The process needs to communicate some how with
casperd(8). The is why libcaspicum was introduced.
This IPC library was providing simple API for commu-
nicate with daemon and services which were in the base
system. As mentioned earlier Casper was initially recog-
nized with Capsicum this is the reason how this library
got its name. Similar libraries were planned to be in-
stalled from ports with new services to display interfaces
for them.

6.3 Sandboxing ping(8)

As a real life example of using Casper, we will use
ping(8) from the FreeBSD base system. First we need
to understand what kind of problem we want to solve.
What we want to achieve is that after argument parsing
all other operations are in sandbox. After an analysis of
the source code we see that descriptor IPPROTO_ICMP
is open very early, even before parsing arguments, this
operation is not permitted in Capsicum, so lets leave it in
the initial phase. So we will find only one such thing -
dns access.

The actual code of sandbox we can find on listing [4]
So first we open the connection to Casper like we de-
scribed it in the previous chapter. Next we need to choose
what services we need in our cases - dns. We will not
create more services so we can close the connection to

casperd(8) casperd(8)

(a) In the most common cases Casper daemon starts with the op-(b) When the daemon is started it spawns a new zygote process

erating system. and starts to listing on an interface.
casperd(8) Casperd(8)

rocess
P process

i
B

(c) A process asks Casper to create a new service using this inter-

face (d) Daemon clones zygote process.

zygote @ zygote @
A
casperd(8) casperd(8) @

[

process
(f) Daemon sends a file descriptor to communicate with the ser-

(e) Casper transforms one of the zygotes into the required service._
vice. The services exists as long as there is a connection to it.

q

4

Figure 1: The life cycle of a zygote in the Casper daemon.

Casper. The final step of configuration of Casper ser-
vice is to limit its access, we set ADDR and NAME
limitation this allow us to use cap_gethostbyname and
cap_gethostbyaddr and also limiting family to AF_INET
only. If we don’t set any limitations all access to the
dns namespace will be allowed. To complete sand-
boxing we need to change gethostbyaddr call to the
cap_gethostbyaddr what was shown in listing

So as we can see the API of the Casper calls is quite
similar to the original API, but we still need to separate
the usage of the libc and Casper one. Actual sandboxing
of ping(8) is a little more complicated for example we
use gethostbyname is done in multiple functions and we
are shown only one.

static cap_channel_t x*
capdns_setup (void)

{
cap-channel_t xcapcas, xcapdnsloc;
const char xtypes[2];
int families[1];
capcas = cap-init();
if (capcas == NULL) {
warn(”unable to contact casperd”);
return (NULL) ;
capdnsloc = cap-service_open(capcas, ”
system.dns”);
/* Casper capability no longer needed. x/
cap-close (capcas);
if (capdnsloc == NULL)
err (1, “unable to open system.dns
service”);
types [0] = "NAME”;
types[1] = ”ADDR”;
if (cap_-dns_type_limit(capdnsloc, types, 2)
< 0)
err (1, “unable to limit access to
system.dns service”);
families [0] = AF_INET;
if (cap_-dns_family_limit(capdnsloc,
families, 1) < 0)
err (1, “unable to limit access to
system.dns service”);
return (capdnsloc);
}

Listing 4: Configuring casper in ping(8).

if (capdns != NULL)
hp = cap_-gethostbyname?2 (capdns, source,
AF_INET) ;
else
hp = gethostbyname2 (source, AF_.INET);
if (!'hp)
errx (EX2NOHOST, ”cannot resolve %s: %s”,
source , hstrerror(h_errno));

Listing 5: Casper usage in ping(8).

6.4 Problems

From the very beginning Casper was a research
project. The approach with the daemon created some
problems that we didn’t expect and we discover them
when we tried to sandbox more applications and create
more services. The problems that we could identify are:

e different cwd from the original process,

o different uid, gid and groups,

different MAC labels,

different descriptor table,

different routing table,

different umask,
e different cpuset(1).

The first problem is that we have a different current
working directory (cwd). casperd(8) will be run from
the root directory but the sandboxed program can be
launched from any directory. If we try to use a service
which covers path namespace, at some point it will do
open(2) or a similar function. The relative path in the
program and in Capser will be different, so daemon will
try to open a different file. This problem even in the
casperd(8) could be partially solved. For example we
could send actual the path to Casper or what would be
even better, a file descriptor which contains cwd and in-
stead of doing open do openat(2). When we open the file
its too late to send the current working directory (because
we are in the sandbox so we don’t have access to current
working directory) so we can only do this when we are
creating a service, but in that case changing the working
directory will not work.

Another problem with the casperd(8) implementation
is that it is running from the root user or casperd user but
not from our user. So potentially if we try for example,
to create a file, Casper will create a file with a file with a
different user thraeni the program is running from. This
problem is easily solved because UNIX domain sockets
allow us to receive other process credentials and we can
do setuid(2), setgid(2) and setgroups(2) to change that
in our service. Only the root can do those functions so
Casper must be launched from that user.

The final problem which we will discuss thoroughly
is the problem with the descriptor table and the process
substitution. To use the process substation in bash we
use the notation of <(list) or >(list). The process list is
run with its input or output connected to the some file in
/dev/fd. That location contains a reference to the process
descriptor table and at this point it is obviously that it
is not inherited by the Casper. If we pass such a path to

Casper instead of cloning one of the descriptor which the
process is the owner it would duplicate one of the Casper.

All other capabilities like MAC labels, umask, routing
table and cpuset(1) are inherited from the original pro-
cess of Casper and not from the process that we are run-
ning. In every cases our sandboxed program can run un-
expectedly and illogically. Unfortunately we don’t have
any method to pass them in a convincing way to the
Casper daemon.

6.5 New implementation

One of our goal is to support path namespace. Unfor-
tunately because of problems described in the chapter[6.4]
it is impossible to see all of these edge cases. We decided
to reimplement the Casper.

We resigned from the Casper daemon approach and
decided to go with a fork approach which at the time
of the first implementation was impossible to achieve.
One of the foundations of the approach are the process
descriptors.

Process descriptors, in brief, are the same as file de-
scriptors but instead of referring to the files or socket they
refer to the process. Instead of using pids we can use a
descriptor to manage the process. The process descrip-
tors use the same table as ordinary descriptors. We can
also use process descriptors in similar ways as normal
descriptors for example we can pass them over a UNIX
domain or use them in the kqueue(1) [4]. Another big
advantage of the process descriptors is that they will not
return any status in functions like wait(2) as long as we
will not give them explicitly, the pid which the process
descriptor have. This means that our fork from the pro-
cess will almost be invisible in a sandboxed program and
will not interact with a function which waits for any pro-
cess El so using our new Casper will not change the be-
havior of program. What is also worth of mentioning is
that the child process will live as long as there will be
existing is at least one process descriptor pointing to it.
We can destroy the process descriptor by calling close on
it.

We reduce the amount of the modules from the orig-
inal implementation. In the new architecture called /ib-
casper we have two modules:

e libcasper,
e services (located in /lib/casper),

We also noted that the split between the IPC and actual
services is not practical. In the previous model, the pro-
gram needed to be recompiled to linked to the IPC li-
brary, so we don’t see any advantages of keeping them
separate. Another advantage is that we need to link the

4wait(2) with -1 argument for example.

IPC library to use services, in the casperd(8) initialize
phase we could make a mistake of opening the services
to which we didn’t have IPC. When we link the libcasper
and libraries repressing services they will automatically
be registered in the Casper library. We achieved that
thanks to the library constructor.

Another difference is when we call cap_init(2) we are
using pdfork(2) to create Casper in the child we create
zygote and then jumping to the internal loop of the lib-
casper. All communication is still done by the UNIX
domain sockets.

From our research we managed to solve most of the
problems described in the chapter [6.4] All of the re-
sources, capabilities and limits are inherited from the
original process that we run. What continues to be a
problem and what developers should keep in mind is that
if we changed some of those capabilities it will not af-
fect Casper automatically. A recommended solution for
that make alli the necessary changes before initializing
libcasper.

What we didn’t managed to save is flexibility about
using Casper and not using it. In the previous version the
administrator could shutdown capserd(8) and use pro-
grams, and after while run it again. Now if we don’t want
to use Casper you need to recompile the program. How-
ever the author thinks that this isn’t a big loss, because
we also removed a single point of failure.

We also achieved that all the life cycles of the zygotes
described at figure [T| weren’t changed. What is also in-
teresting no API changes was made between versions.
libcasper is not in base system at the time of writing this
which is scheduled to be published on 12, 2016.

6.6 Future goals

‘What we want to achieve in the nearest future:

e lower the bar for the new Casper and Capsicum con-
sumer,

e publish the system.filesystem or similar services
which allow to interact with path namespace,

e remove the need of checking if Casper is available.

References

[1] Theo de Raddt, pledge() a new mitigation mecha-
nism, hackfest 2015 http://www.openbsd.org/
papers/hackfest2015-pledge/mgp00001.
html

[2] pledge restrict system operations, OpenBSD Man-
ual http://www.openbsd.org/cgi-bin/man.
cgi/0OpenBSD-current/man2/pledge.2

http://www.openbsd.org/papers/hackfest2015-pledge/mgp00001.html
http://www.openbsd.org/papers/hackfest2015-pledge/mgp00001.html
http://www.openbsd.org/papers/hackfest2015-pledge/mgp00001.html
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/pledge.2
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/pledge.2

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Seccomp, Mozilla https://wiki.mozilla.
org/Security/Sandbox/Seccomp

Robert N. M. Watson, Jonathan Ander-
son, Ben Laurie, Kris Kennaway, Cap-
sicum: Practical Capabilities for UNIX, 2010:
https://www.usenix.org/legacy/event/
secl0/tech/full_papers/Watson.pdf

Robert Watson, Cambridge Computer Laboratory
Web page, 2014 https://www.cl.cam.ac.uk/
research/security/capsicum/

Linux repository with ongoing work around
Capsicum, https://github.com/google/
capsicum-linux

Ed Schouten, CloudABI, BSDCan, 2015
https://www.bsdcan.org/2015/schedule/
attachments/330_2015-06-13%20C1oudABIY
20at¥20BSDCan. pdf

CloudABI libc repository, https://github.
com/NuxiNL/cloudlibc

Pawel Jakub Dawidek, Mariusz Zaborski, Sand-
boxing with Capsicum, December 2014 https:
//www.usenix.org/system/files/login/
articles/login_dec14_03_dawidek.pdf

https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://www.usenix.org/legacy/event/sec10/tech/full_papers/Watson.pdf
https://www.usenix.org/legacy/event/sec10/tech/full_papers/Watson.pdf
https://www.cl.cam.ac.uk/research/security/capsicum/
https://www.cl.cam.ac.uk/research/security/capsicum/
https://github.com/google/capsicum-linux
https://github.com/google/capsicum-linux
https://www.bsdcan.org/2015/schedule/attachments/330_2015-06-13%20CloudABI%20at%20BSDCan.pdf
https://www.bsdcan.org/2015/schedule/attachments/330_2015-06-13%20CloudABI%20at%20BSDCan.pdf
https://www.bsdcan.org/2015/schedule/attachments/330_2015-06-13%20CloudABI%20at%20BSDCan.pdf
https://github.com/NuxiNL/cloudlibc
https://github.com/NuxiNL/cloudlibc
https://www.usenix.org/system/files/login/articles/login_dec14_03_dawidek.pdf
https://www.usenix.org/system/files/login/articles/login_dec14_03_dawidek.pdf
https://www.usenix.org/system/files/login/articles/login_dec14_03_dawidek.pdf

	Introduction
	Pledge
	Capsicum
	Sandboxing uniq(1)

	CloudABI
	Comparison
	Casper
	Introduction
	Initial architecture
	Sandboxing ping(8)
	Problems
	New implementation
	Future goals

	Bibliografia

